Abstract

Low-angle detachment faults are key to our understanding of the tectonic evolution of magma-poor rifted continental margins. In seismic images of present-day rifted margins the identification and interpretation of such features is, however, notoriously difficult and ambiguous. We address this problem by studying the structure and seismic response of such faults through a synoptic interpretation of petrophysical data and geological evidence from the distal segments of the present-day West Iberian and the ancient Tethyan margins. On the basis of the geologically well-constrained remnants of the Tethyan margins, which are spectacularly preserved and exposed in the Alps of Eastern Switzerland, vertical profiles at four key geological settings of a typical magma-poor rifted margin are constructed and their synthetic seismic responses are compared to the observed seismic data from corresponding locations in the present-day Iberian margin. The seismic structure of these profiles is considered as the sum of deterministic large-scale and the stochastic small-scale components. Both components are analyzed for all pertinent lithologies. The large-scale structures are derived from laboratory measurements on samples from both, the West Iberian and Tethyan margins, whereas the small-scale fluctuations are constrained predominantly on the basis of well-log data from the Iberian margin. Different realizations of the simulated stochastic small-scale velocity fluctuations illustrate the potential variability of impedance contrasts and its impact on the seismic response from lithological interfaces and fault structures. Our results indicate that the nature of the seismic response from low-angle detachment faults is largely determined through the fracture-healing behavior of the surrounding rocks. Geological evidence from the exposed fragments of the Tethyan margins indicate that fracture-healing is generally well developed in crustal lithologies, but largely absent in mantle lithologies. It is for this reason that low-angle, intra-crustal detachment faults tend to be seismically undetectable. Conversely, crust–mantle detachments have a complex and variable seismic response, depending on the nature of the damaged zone and on the frequency content of the seismic data. These model-based inferences are consistent with the available evidence from the present-day Iberian passive margin and thus open new perspectives for the interpretation of the corresponding seismic images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call