Abstract

Time-frequency peak filtering (TFPF) is an effective method for seismic random noise attenuation. The linearity of the signal has a significant influence on the accuracy of the TFPF method. The higher the linearity of the signal to be filtered is, the better the denoising result is. With this in mind, and taking the lateral coherence of reflected events into account, we do TFPF along the reflected events to improve the degree of linearity and enhance the continuity of these events. The key factor to realize this idea is to find the traces of the reflected events. However, the traces of the events are too hard to obtain in the complicated field seismic data. In this paper, we propose a Multiple Directional TFPF (MD–TFPF), in which the filtering is performed in certain direction components of the seismic data. These components are obtained by a directional filter bank. In each direction component, we do TFPF along these decomposed reflected events (the local direction of the events) instead of the channel direction. The final result is achieved by adding up the filtering results of all decomposition directions of seismic data. In this way, filtering along the reflected events is implemented without accurately finding the directions. The effectiveness of the proposed method is tested on synthetic and field seismic data. The experimental results demonstrate that MD–TFPF can more effectively eliminate random noise and enhance the continuity of the reflected events with better preservation than the conventional TFPF, curvelet denoising method and F–X deconvolution method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.