Abstract

The authors study the property of production-scale blasts to induce seismic events classified as micro shocks, rock bursts and earthquakes caused by sudden slips along faults. The study area is the production performance zone of Apatit’s Kirovsk Branch. It is situated in the southeast of the Khibiny Massif on the Kola Peninsula and is subjected to continuous autonomous seismicity monitoring. The subject of the research is the production blasts and seismic events recorded by the seismic monitoring station of Apatit’s Kirovsk Branch between January 1996 and June 2019. Blasting-induced seismic events were identified using the nearest neighbor method and the seismicity-dependent proximity function of the space–time–magnitude (energy), calculated with respect to the blasts. The threshold of the proximity function to assume a seismic event as the blast-induced event was selected using the model-independent method of seismic catalog randomization. It is shown that the number of blasting-induced seismic events—blasting productivity—obeys an exponential distribution irrespective of magnitudes or occurrence depths of the studied events. The obtained result conforms with the earlier determined productivity law for natural earthquakes on a global and regional scale, as well as for mining-induced seismicity in the Khibiny Massif. Accordingly, the productivity distribution is governed by the properties of a medium and is independent of the source mechanism of a triggering event (explosion, seismicity). The paper presents the research findings supported by the Russian Foundation for Basic Research, Project No. 19-05-00812, and in the framework of State Contract No. 007-00186-18-00 with the Kola Branch of the Geophysical Service of the Russian Academy of Sciences.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call