Abstract

Blind numerical simulations of seven centrifuge tests with “identical” models of a sheet-pile wall supporting medium dense liquefiable backfill and subjected to seismic excitation were performed as part of the LEAP 2020 project. The analyses were conducted with FLAC using the Ta-Ger soil constitutive model. The Ta-Ger model parameters were calibrated against available laboratory DSS data on Ottawa sand with similar relative density with a focus on capturing at an element level: i) the liquefaction triggering resistance, ii) the post-liquefaction rate of shear-strain accumulation, iii) overburden effects on liquefaction triggering resistance and iv) realistic shear stress-strain responses. A single numerical model was built in prototype scale and analyses were performed by only varying the input seismic motion recorded at the base of each of seven centrifuge tests. Comparisons of numerical predictions with measured centrifuge test responses indicate that the analyses successfully capture the primary mechanisms of the system response. These included liquefaction in the free-field and development of negative pore pressures behind the wall, with accurate predictions of outward wall displacement for the majority of the tests. Most centrifuge tests and numerical predictions consistently exhibit a systematic linear trend of increase in wall displacements with spectral acceleration at the predominant frequency of the system. The numerical analyses overpredicted wall displacements only for centrifuge tests not following this trend, indicating that the variations maybe due to experimental variations from their specifications that were not considered in the blind predictions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call