Abstract

This article presents an experimental and numerical study on seismic performance of semi-tenon joints reinforced by steel angle in traditional timber buildings. Five specimens with two different reinforced connections and one unreinforced connection subjected to low-cyclic reversed loading on the bending moment are examined. The unreinforced connection consists of left and right beams inserted into the column that has been used in setting up the mortise before assembly. The first type of reinforced connection is formed by bottom steel angles bolted to the column and jointed to the beam by means of bolts. The second type of reinforced connection is made up of top and bottom steel angles bolted to the column and connected to the beam relying on vertical and transverse bolts. Moreover, two reinforcement techniques aimed at enhancing the seismic performance of semi-tenon joints are investigated, including the change of steel angle limb length and the variation of steel angle limb thickness. The test setup, joint connection, reinforced conditions, and material properties are introduced through detailed account of the experimental results and observations. The key behavioral patterns are identified from the experiments and the main response characteristics such as hysteresis, stiffness, flexural capacity, energy dissipation, and the failure mechanism. This article demonstrates that the steel angle can enhance the flexural capacity of the semi-tenon joints significantly. Besides, the use of greater limb thickness steel angle is shown to be an effective detail for adequately increasing the flexural capacity and rotation stiffness of the joints. Finite element simulations of experiments are also conducted, together with a detailed description of the modeling methods, so as to gain further insight into the influence of various factors on the behavior of joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call