Abstract

Seawater and sea sand concrete (SWSSC) filled ultra-high performance concrete (UHPC) tube (SFUHPC tube) column is a cement-based tubular composite column, which combines the excellent compressive strength and toughness of UHPC and lateral confining action from fiber reinforced polymer (FRP) hoops. The novel composite system has the potential to be used in marine engineering. The aims of this paper focus on evaluating the seismic performance of SFUHPC tube columns for being designed in costal and marine engineering. A series of low-cycle reversed lateral loading tests were conducted on five relatively large-scale specimens. FRP hoop volumetric ratio, compressive strength of filling SWSSC, and the types of FRP bar were selected as test parameters in this investigation. The failure modes, hysteretic responses and effects of main parameters were studied and discussed. SFUHPC tube columns exhibited flexural failure mode without visible spalling of the UHPC cover. It is noteworthy that the limit plastic drift ratios of all SFUHPC tube columns exceed the specified limits (0.02) in accordance to the rare earthquake requirement in seismic design code. The current study reveals that the proposed composite columns have acceptable ductility and relatively reliable lateral resistant performance for being used in the marine engineering. From the point of view of seismic performance, filling high strength SWSSC in UHPC tube is acceptable for the proposed composite system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call