Abstract

As the construction industry is striding towards the industrialization of green buildings, a precast concrete frame beam-column joint with high-strength reinforcement was proposed. Simulate reversed cyclic loading was carried out on two precast connections and one cast-in-place connection to examine the seismic behavior of the proposed new precast connection. The main test variables between the two precast connections were the strength of the reinforcement at the bottom of the beam. The failure shape, hysteresis curve, skeleton curve, strength, deformation ability, stiffness degradation, and energy dissipation were monitored and compared with the cast-in-place connection. The findings of this paper showed that the precast joints had good strength reserve, and the seismic performance in the later stage of loading even exceeds the cast-in-place joints. It was also found that the plastic hinge zone of the beam could be moved away from the column surface via reinforcement method. Additionally, based on the experiment, a detailed nonlinear finite element analysis (FEA) method was developed to reproduce the test response of specific types of bending moment-resistant precast concrete beam-column connections under a reversed loading test, which provided a theoretical reference for further research of the connections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.