Abstract

This paper presents the results from a large-scale experimental study that was conducted at the University of Nevada in Reno, NV. Five half-scale bridge column models were constructed and tested under reversed slow cyclic loading. The study focused on developing four new moment connections at column-footing joints for accelerated bridge construction in regions of high seismicity. The new connections were employed in precast columns, each using mechanical splices to create connectivity with reinforcing bars in a cast-in-place footing. Two different mechanical splices were studied: an upset headed coupler and a grout-filled sleeve coupler. Along with the splice type, the location of couplers within the plastic hinge zone was also a test variable. All precast models were designed with the intent to emulate conventional cast-in-place construction and, thus, were compared with a conventional cast-in-place test model. Results indicate the behavior of these new connections was similar to that of conventional cast-in-place construction with respect to key response parameters, although the plastic hinge mechanism could be significantly affected by the couplers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.