Abstract

This paper deals with an experimental study on the seismic performance of haunched transfer beam structures with varied ratio of section height to thickness of short-leg shearwall (RHT). Based on the seismic tests of three 1:3-scaled specimens under low-frequency cyclic lateral load with constant vertical actions, the failure pattern, the hysteresis curves, the skeleton curves, the energy dissipation capacity, and the stiffness degradation laws of haunched transfer beam structures are investigated. The effects of different RHT (i.e., 5, 6 and 7) on the seismic performance of haunched transfer beam structures are emphasized and analyzed in detail. It is concluded that the rigidity of the structure is noticeable enhanced, the endogen force becomes more evenly distributed and the bearing is more rational with an increase of the RHT; the rationally designed haunched transfer beam structure has a good seismic behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.