Abstract

Lack of corrosion resistance and post-earthquake resilience will inevitably result in a considerable loss of function for concrete bridge piers with conventional steel reinforcement. As an alternative to steel reinforcement, shape memory alloy (SMA)-based reinforcing bars are emerging for improving the seismic performance of concrete bridge piers. This paper presents an assessment of concrete bridge piers with different reinforcement alternatives, namely steel reinforcement, steel-SMA hybrid reinforcement and SMA reinforcement. The bridge piers with different reinforcements are designed having a same lateral resistance, or in other words, the flexural capacities of plastic hinges are designed equal. Based on this, numerical studies are conducted to investigate the relative performance of different bridge piers under seismic loadings. Seismic responses in terms of the maximum drift, residual drift as well as dissipated energy are obtained and compared. The results show that all the three cases with different reinforcements exhibit similar maximum drifts for different earthquake magnitudes. The SMA-reinforced bridge pier has the smallest post-earthquake residual displacement and dissipated energy, whereas the steel-reinforced pier shows the opposite responses. The steel-SMA hybrid reinforcement can achieve a reasonable balance between the residual deformation and energy dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.