Abstract

Timber-framed masonry structures are widely used around the world, and their seismic performance is generally poor. Most of them have not been seismically strengthened. In areas with high seismic fortification intensity, there are great potential safety hazards. And it is urgent to carry out effective seismic reinforcement. However, due to the complicated construction process of the existing reinforcement technology, the poor durability of the reinforcement materials, and the significant disturbance to the life of the original residents, an efficient single-story timber-framed masonry structure reinforcement technology suitable for comprehensive promotion and application has not been explored. In this paper, a fiber-reinforced cement mortar (FRCM) material was proposed. A 1/2 scale model of a single-story timber-framed masonry structure was taken as the research object. The method of strengthening a single-story timber-framed masonry structure with FRCM layer was adopted. And the shaking table test of the model before and after reinforcement was carried out in turn. The dynamic characteristics, failure modes, acceleration response and displacement response of the FRCM layer-strengthened structure were analyzed through comparisons of the two cases. The experimental results showed that the FRCM layer significantly improved the seismic performance of the seismic-damaged single-story timber-framed masonry structures. The X- and Y-direction natural frequencies of the model structure were increased by 31.30% and 30.22%, respectively, after the structure was strengthened with FRCM. During a rare eight-degree earthquake, the inter-story displacement angles in the X- and Y-direction of the unreinforced model reached 1/98 and 1/577, respectively, and the structure was destroyed, while the inter-story displacement angle of the FRCM-reinforced model was only 1/2 of that the unreinforced model. During a rare nine-degree earthquake, the X-direction inter-story displacement angle of the model strengthened with FRCM reached 1/78 and the Y-direction inter-story displacement angle reached 1/178. At this time, the reinforced model structure was destroyed, but there was no collapse of the structural components, which met the seismic design objectives of “operational under the design minor seismic intensity, repairable damage under the design seismic precautionary intensity, and collapse prevention under the design rare seismic intensity”, which proved that the FRCM layer was an effective and feasible way to strengthen the existing single-story wood-masonry rural building.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call