Abstract

In many earthquake prone regions in developing countries, substandard steel moment resisting frame (SMRF) systems pose a profound danger to people and economy in the case of a strong seismic event. Eccentric bracing systems with replaceable vertical links can be utilized as an efficient and practical seismic retrofitting technique to reduce future earthquake damages to such structures. This paper aims, for the first time, to demonstrate the efficiency of eccentric bracing systems with vertical links as a seismic retrofitting technique for the SMRF structures with WCSB and to develop fragility curves for such structures. To achieve this aim, first, the effect of the vertical links on the behaviour of 3, 5 and 7-storey frames are studied through conducting the Nonlinear Static Analyses (NSA) as well as Nonlinear Time History Analyses (NTHA) using the artificial accelerograms compatible with the target design spectrum. The analysis results indicate that, as aimed in the design stage, the seismic damage is only concentrated at the replaceable vertical links and remaining structural members work mainly in the elastic range. In addition, the proposed retrofitting technique considerably improves the performance of the deficient SMRF systems by effectively restricting the displacement response and damage distribution in such structures. Following the NTHA, Incremental Dynamic Analyses (IDA) are performed to develop the seismic fragility curves for the retrofitted SMRF systems. The results indicate that the proposed retrofitting technique significantly reduces the fragility of such systems, and therefore, can provide a simple and efficient method to improve the seismic performance of deficient steel moment resisting frames in seismic regions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.