Abstract

In precast reinforced concrete buildings, which constitute an important part of the industrial buildings in Turkey, the force flow between the structural elements is provided by beam-column connections with or without transferring moments. In general, moment resisting beam-column connections with mechanical or emulative components are applied at the mezzanine level. For precast concrete structures, strength-based design is the most common design approach in engineering practice. In recent years, performance based seismic design and evaluation approach also gained attention which provides numerical estimation of the damage in structural elements subjected to earthquake loading. This study presents the performance based seismic assessment of a two-story precast building based on the seismic evaluation requirements of Turkish Building Earthquake Code 2018. For this purpose, numerical simulation model has been established by using lumped plasticity models for connections and distributed plasticity models for columns. Strong ground motion records are scaled based on TBEC-2018 acceleration spectrum for a specific location, and nonlinear time history analyses are performed in x and y directions simultaneously. The performance evaluation results using average deformations show that there is a significant difference between plastic rotation and reinforcing bar strain performance limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.