Abstract

Chile, recognized as one of the world’s most earthquake-prone nations, has gained valuable insights from significant earthquakes, such as those in 1985 and 2010, which have influenced updates to the nation’s design codes. Although Chile’s seismic design approach has been largely effective in recent earthquakes and demonstrated an “operational” performance level in most structures, performance-based design (PBD) methods have not yet been officially incorporated as valid approaches in the Chilean seismic design codes for buildings. However, in 2017, the Chilean Association on Seismology and Earthquake Engineering (ACHISINA) introduced a PBD approach, primarily for verification purposes, based on the Los Angeles Tall Buildings Structural Design Council (LATBSDC) framework. In this work, firstly, we provide an overview of Chile’s PBD methodology, focusing on the thresholds for various performance levels. These levels are established through experimental and numerical analysis, correlating performance with permissible damage levels. The second part of the paper examines the seismic performance of a residential building, designed before the 2010 Maule earthquake and subsequently damaged, using Chile’s PBD guidelines. This case study highlights the implementation and effectiveness of PBD for assessing seismic resilience in Chilean structures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.