Abstract
Pall-typed frictional damper (PFD) has higher capacity of energy dissipation, whereas shape memory alloy (SMA) has excellent superelastic performance. Therefore, combining PFD and SMA together as a brace system has a great prospect in vibration control of structures. This paper investigates the performance of offshore platform with three structural configurations including the SMA brace system, the ISO-SMA (where ISO stands for isolation) brace system, and the ISO-PFD-SMA brace system, which are subjected to seismic and ice-induced excitations. In this study, PFD-SMA brace system is installed on the isolation layer of jacket platform, which is under earthquake excitations and ice loading. Then, the reduction of vibration is evaluated by using ANSYS program. The results show that the PFD-SMA brace system is useful in reducing the seismic response and ice-induced response of offshore platform structures; meanwhile, it also demonstrates excellent energy dissipation and hysteretic behavior.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.