Abstract

The monitoring of the number of acoustic seismic impulses arising from snow instabilities is regarded as a relative indicator of an unstable snow slope but has not yielded a qualitative, predictive indicator. Until now, the source parameters (fracture area and length), seismic moment, energy released, stress drop, and location of acoustic seismic emissions arising from the snowpack have been neglected. A comprehension of these parameters leads to a better understanding of the event and may help in avalanche prediction. The location of a seismic event is derived from time differences between P-wave arrivals at four sensors located at the snow-ground interface. Three methods confirm the location of an acoustic seismic snow event to within 2 to 4 cm when the event is inside a seismic net. Spectral analyses of body waves from seismic snow events yield estimates of source parameters, stress drop and energy released. Equivalent dislocation surface radii range from 4.8 to 9.0 cm, which give stress drops of 0.20 to 0.29 bar, with a dissipated energy in the range of 0.0205 to 0.0632 J. Spectral analysis of the acoustic seismic snow event with application of dislocation theory provides several likely methods to predict avalanches of a climax type.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.