Abstract

Energy dissipation damping technology is usually used for infrastructure construction in seismic regions. In this study, a lever-type lead viscoelastic node damper (LTLVND), which can capture small rotational displacements of the infrastructure under seismic excitation, is innovatively proposed based on the leverage effect. The characteristics of energy-absorbing capacity of the LTLVND and its mitigation effect on the dynamics of the structure under seismic excitation are studied. Testing and modelling results show that a satisfactory energy dissipation effect can be observed for the innovative lead viscoelastic damper (LTLVND). Finally, a seismic analysis of a concrete frame structure with LTLVNDs is carried out. Pushover analysis and dynamic elastoplastic analysis are included. It is shown that a significant improvement in structural performance under seismic conditions can be achieved with the addition of LTLVNDs at appropriate locations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.