Abstract

Energy dissipation damping technology is usually used for infrastructure construction in seismic regions. In this study, a lever-type lead viscoelastic node damper (LTLVND), which can capture small rotational displacements of the infrastructure under seismic excitation, is innovatively proposed based on the leverage effect. The characteristics of energy-absorbing capacity of the LTLVND and its mitigation effect on the dynamics of the structure under seismic excitation are studied. Testing and modelling results show that a satisfactory energy dissipation effect can be observed for the innovative lead viscoelastic damper (LTLVND). Finally, a seismic analysis of a concrete frame structure with LTLVNDs is carried out. Pushover analysis and dynamic elastoplastic analysis are included. It is shown that a significant improvement in structural performance under seismic conditions can be achieved with the addition of LTLVNDs at appropriate locations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call