Abstract
This article investigates bypassing the inversion steps involved in a standard litho-type classification pipeline and performing the litho-type classification directly from imaged seismic data. We consider a set of deep learning methods that map the seismic data directly into litho-type classes, trained on two variants of synthetic seismic data: (i) one in which we image the seismic data using a local Radon transform to obtain angle gathers, (ii) and another in which we start from the subsurface-offset gathers, based on correlations over the seismic data. Our results indicate that this single-step approach provides a faster alternative to the established pipeline while being convincingly accurate. We observe that adding the background model as input to the deep network optimization is essential in correctly categorizing litho-types. Also, starting from the angle gathers obtained by imaging in the Radon domain is more informative than using the subsurface offset gathers as input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.