Abstract

Porosity and facies are two main properties of rock which control the reservoir quality and have significant role in petroleum exploration and production. Well and seismic data are the most prevalent information for reservoir characterization. Well information such as logs prepare adequate vertical resolution but leave a large distance between the wells. In comparison, three-dimensional seismic data can prepare more detailed reservoir characterization in the inter-well space. Generally, seismic data are an efficient tool for identification of reservoir structure; however, such data usable in reservoir characterization. Therefore, these two types of information were incorporated in order to obtain reservoir properties including porosity and facies in the study area. Using Multimin algorithm, petrophysical analysis was carried out for estimation of reservoir porosity. Then, an accurate post-stack inversion was accomplished to obtain the acoustic impedance volume. The results showed that the Ghar sandstone is characterized by a lower acoustic impedance compared to the high acoustic impedance Asmari Formation. Because of a relationship between acoustic impedance and reservoir properties (i.e., porosity), porosity cube calculation was performed by artificial neural network method which is a popular approach for parameter estimation in petroleum exploration. The consequences showed a good agreement between log based and seismic inversion-derived porosity. The inversion results and well logs cross-plots analyses illustrated that the Ghar member considered as a high quality zone with porosity 22 to 32 percent and the Asmari dolomite shows a low quality interval characters with porosity 1 to 6 percent. The findings of this study can help for better understanding of reservoir quality (especially porous Ghar member delineation) by lithology discrimination in the analysis of identification reservoirs and finding productive well location in Hendijan field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.