Abstract
Summary Seismic instantaneous frequency (IF) is a useful attribute for characterizing depositional features from seismic data. However, commonly used IF estimations methods are sensitive to noise and also suffer from meaningless values. In this paper, we propose an IF regularization method based on time-frequency analysis. The Stockwell transform (ST), which has an advantage in providing multi-resolution time-frequency analysis while retaining the absolute phase of each frequency component, is used for IF regularization. We firstly decompose the estimated IF into the ST domain. By considering that most geologic changes are expressed only in certain local spectral ranges, we utilize an instantaneous amplitude parameterized low pass filter to identify the spectral ranges of IF from the multi-resolution results. After inverse ST is taken, noise and meaningless values are removed, and the regularized IF becomes more useful for describing geological features. The synthetic and real data examples demonstrate the effectiveness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.