Abstract

In the presented study, multi-parameter inversion in the presence of attenuation is used for the reconstruction of the P- and the S- wave velocities and the density models of a synthetic shallow subsurface structure that contains a dipping high-velocity layer near the surface with varying thicknesses. The problem of high-velocity layers also complicates selection of an appropriate initial velocity model. The forward problem is solved with the finite difference, and the inverse problem is solved with the preconditioned conjugate gradient. We used also the adjoint wavefield approach for computing the gradient of the misfit function without explicitly build the sensitivity matrix. The proposed method is capable of either minimizing the least-squares norm of the data misfit or use the Born approximation for estimating partial derivative wavefields. It depends on which characteristics of the recorded data—such as amplitude, phase, logarithm of the complex-valued data, envelope in the misfit, or the linearization procedure of the inverse problem—are used. It showed that by a pseudo-viscoelastic time-domain full-waveform inversion, structures below the high-velocity layer can be imaged. However, by inverting attenuation of P- and S- waves simultaneously with the velocities and mass density, better results would be obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call