Abstract

A picture of the upper crustal structure of the Irpinia active faults system in southern Italy was obtained by combining new geological evidences, lithological properties, and microseismicity distribution. P and S wave velocity models indicate high VP/VS and low VP × VS values, suggesting fluid accumulation within a ~15 km wide rock volume where intense microseismicity is located. The 1980 Irpinia, Ms 6.9, earthquake nucleated within the same fault-bounded volume. We suggest that concentration of background seismicity is mainly controlled by high pore fluid pressure. Its increase in fluid-filled cracks around major faults leads to earthquakes' nucleation. Seismic pumping along major faults carries fluids through the conduit system represented by the intensely fractured damage zone. Conversely, the cross-fault barrier behavior of the low-permeability fault core leads to pore fluid pressures building up within the fault-bounded block, thus producing a positive feedback triggering earthquake nucleation within the volume, which behaves as an “earthquake reservoir.”

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call