Abstract

AbstractThe seismic performance of earth dams can be assessed using various procedures spanning from simple deterministic methods to fully-probabilistic approaches, such as fragility analyses. In this study, analytical seismic fragility functions (i.e., based on results of numerical analyses) for two earth dams (the Farneto del Principe and the Angitola dams) in the Calabria region (Southern Italy) are developed. The Farneto del Principe dam does not have liquefaction-related issues, while the Angitola dam is founded on soils susceptible to liquefaction. The analyses are performed using numerical simulations based on the so-called multiple-stripe method. This framework takes inputs from site-specific probabilistic seismic hazard analysis results and it is used here to develop fragility functions for intensity measure (IM) values at the same return period of the seismic action. Separate calculations are presented, using the relatively simple hysteretic soil model implemented in the 2D finite difference method software FLAC and two advanced constitutive models (PM4Sand and PM4Silt) specifically developed to simulate the stress-strain response of sands and silts in geotechnical earthquake engineering applications. Fragility functions for several damage mechanisms and IMs are obtained. The analyses show that the IMs with the highest predictive power (i.e., those with the lowest fragility function standard deviations) are the peak ground acceleration and velocity (PGA and PGV) for the Farneto del Principe dam and the cumulative absolute velocity (CAV), the cumulative absolute velocity after application of a 5 cm/s2 threshold acceleration (CAV5), and PGV for the Angitola dam.KeywordsFragility functionsEarth damsPM4SandPM4SiltMultiple-stripe analysis

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call