Abstract
The seismic fragility of prefabricated self-centering frame structures composed of self-centering joints is investigated for reference in their seismic design and application. In this paper, a new design of the concrete-filled double steel tubular column-RC beam joint with self-centering capability and friction energy dissipation was proposed. The joint was modeled with ABAQUS and OpenSees, and hysteretic simulation was carried out to verify the reasonableness and accuracy of the OpenSees phenomenological model. Based on the OpenSees platform, a one-bay, six-story prefabricated self-centering frame structure was modeled, and seismic fragility analysis based on the incremental dynamic analysis was performed, in which seismic fragility curves were obtained according to the probabilistic demand analysis model. The results indicated a high coincidence in hysteretic curves between the ABAQUS model and the OpenSees phenomenological model, which showed favorable self-centering and energy dissipation performance of the joint proposed in this paper. Based on FEMA 356, three kinds of performance points were defined, i.e., “Immediate Occupancy” (IO), “Life Safety” (LS), and “Collapse Prevention” (CP). The prefabricated self-centering frame in this paper tended to exceed the IO, where the stiffness and strength of the structure was susceptible to damage. However, the failure probability at the LS performance level remained low, with only 5% and 37% failure probability under moderate and rare earthquakes, respectively. The structure achieved a collapse margin ratio of 4.28, which indicated a high collapse resistance in it.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.