Abstract

This study analyzes the impact of the number of ground motions on the seismic fragility of a high earth-rockfill dam and the estimation of reasonable fragility parameters based on a sufficient number of earthquake records. In this paper, the vertical deformation is obtained using the three-dimensional finite element program DYNE3WAC combined with the Pastor–Zienkiewicz–Chan model and Biot dynamic consolidation theory. The relative seismic settlement rate is considered the damage index for the seismic fragility analysis of the dam. The fragility curves of the high earth-rockfill dam are determined by the multiple stripe analysis (MSA) method. A set of seismic waves is chosen based on the spectrum in the Chinese hydraulic structure seismic code. With an increasing number of earthquake records, the coefficients of variation (COV) of the mean and standard deviation (STD) of the relative seismic settlement rate decrease and tend to stabilize when the number of earthquake records reaches 34. The estimated fragility parameters θ and β are constant when the number of earthquake records exceeds 34. The requisite number of earthquake records for an accurate fragility estimation is determined by analyzing the lower and upper confidence intervals for the estimated θ and β. The 95% and 90% confidence interval can accurately estimate the fragility of a high earth-rockfill dam when the number of ground motion records reaches 36 and 32, respectively. The results of the fragility analysis demonstrate that the DYNE3WAC program and MSA method can provide an effective basis for determining fragility curves. Furthermore, the sensitivity analysis of earthquake records is essential for assessing the seismic fragility of high earth-rockfill dams.

Highlights

  • High earth-rockfill dams are an important part of the China’s infrastructure and represent sources of massive amounts of sustainable, renewable and clean hydropower energy [1]

  • Owing to a large number of dynamic finite element calculations and seismic fragility analysis, the ASUS workstation with 128 G of RAM and a main frequency of 3.3 GHz was used to calculate the dynamic response of the dam

  • This study uses the three-dimensional dynamic finite program DYNE3WAC combined with the PZC elastoplastic constitutive model and the Biot consolidation theory to determine the vertical deformations in a high earth-rockfill dam

Read more

Summary

Introduction

High earth-rockfill dams are an important part of the China’s infrastructure and represent sources of massive amounts of sustainable, renewable and clean hydropower energy [1]. China is one of the countries most affected by natural disasters, especially earthquakes, due to its specific location and large territory. The 1999 Chi-Chi earthquake, the 2008 Wenchuan earthquake, and the 2010 Yushu earthquake have demonstrated that the dams are vulnerable to earthquakes. The great Wenchuan earthquake that occurred in China caused earthquake damage to more than 2500 earth-rockfill dams. High earth-rockfill dams with heights of 200-300 meters are located in areas prone to strong earthquakes [2, 3]. Seismic performance assessments must be performed to assess the safety of these dams

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call