Abstract

A parametric study of regular ductile reinforced concrete (RC) cantilever walls designed with the 2010 National building code of Canada and the 2004 Canadian Standards Association (CSA) standard A23.3 for Vancouver is performed to investigate the influence of the following parameters on the higher mode amplification effects, and hence on the seismic force demand: number of storeys, fundamental lateral period (T), site class, wall aspect ratio, wall cross-section, and wall base flexural overstrength (γw). The study is based on inelastic time-history analyses performed with a multilayer beam model and a smeared membrane model accounting for inelastic shear–flexure–axial interaction. The main conclusions are that (i) T and γware the studied parameters affecting the most dynamic shear amplification and seismic force demand, (ii) the 2004 CSA standard A23.3 capacity design methods are inadequate, and (iii) a single plastic hinge design may be inadequate and unsafe for regular ductile RC walls with γw < 2.0.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call