Abstract

Abstract We study the evolution of the Eocene–Recent Phu Khanh Basin opened during the rifting of the South China Sea (SCS). This sub-basin formed when continental crust ruptured along the East-Vietnam Boundary Fault (EVBF) at the western edge of the SCS. Using high quality long-streamer seismic lines we interpret structures that highlight the different phases of the SCS rifting and processes related to crustal boudinage. Extreme crustal thinning and mantle uplift that sometimes places sediments in contact with the Moho discontinuity mark the central part of the basin. The mantle is shallowest there and marks the final rupture of the continental crust during an intense phase of mantle upwelling. There, a low-angle detachment fault separates several crustal blocks from the Moho. The cylindrical axis of the Moho rise is roughly parallel to the trend of the South China Sea propagator. Above the mantle, the upper and lower crusts form large crustal boudins. The network of normal faults is dense in the upper crust and occasionally propagates into the lower crust. However, the lower crust is missing at some places. The seismic facies above the Moho rise is poorly stratified and might have been affected by a certain degree of metamorphism. At the apex of mantle uplift, there are frequent indications of fluid circulations, including volcanic edifices and gas escapes features. Three stages of extension are clearly identifiable, with ages of the two youngest constrained by well calibration: the first and oldest rift sequence is situated between the tilted pre-rift basement and the Oligocene horizons (32 Ma); the second is delimited by the Oligocene to the Mid Miocene (15.5 Ma) horizons, and the third is bound by the Mid Miocene and the Upper Miocene (before 10.5 Ma) horizons. These three rift episodes formed in at least two extension directions, the first N–S and the second NW–SE. The distinct Mid Miocene (15.5 Ma) horizon is tilted and the above layers show a diverging reflection. These are in turn sealed by an erosional unconformity before 10.5 Ma. Although tectonic activity appears diachronous from north to south, we suggest that cessation of rifting did not occur before 12–10.5 Ma. This differs from models derived from magnetic anomalies observed in the South China Sea (15.5 to 20 Ma).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.