Abstract

The Amazon fan contains a gas hydrate province known from a bottom-simulating reflection (BSR) that lies within an upper slope compressional belt. In this study, the extent and character of the BSR and its relation to thrust-fold structures is examined using a grid of 2D and 3D seismic data. We show the BSR to comprise a series of elongate patches up to 16 km wide that are present along 300 km of the slope in water depths of 750-2250 m and extend over a total area of 6800 km2. The elongate BSR patches show a strong spatial correspondence with the arcuate crests of thrust-fold anticlines. In profile, the BSR patches exhibit convex forms and/or locally irregular relief that rises toward the seafloor. In plan, 3D seismic horizon maps reveal columnar BSR elevations up to 1 km wide, which rise beneath seafloor mounds and depressions, up to 0.5 km wide and 30 m in relief, interpreted as small mud volcanoes and possible pockmarks. The elongate BSR patches are interpreted to record the structurally-controlled rise of warm, gas-rich fluids into the crests of thrust-folds and their leakage into the gas hydrate stability zone, and in places to seafloor, through a near-surface system of faults, hydrofractures and vents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call