Abstract

Context. Asteroseismic measurements of the internal rotation of subgiants and red giants all show the need for invoking a more efficient transport of angular momentum than theoretically predicted. Constraints on the core rotation rate are available starting from the base of the red giant branch (RGB) and we are still lacking information on the internal rotation of less evolved subgiants. Aims. We identify two young Kepler subgiants, KIC 8524425 and KIC 5955122, whose mixed modes are clearly split by rotation. We aim to probe their internal rotation profile and assess the efficiency of the angular momentum transport during this phase of the evolution. Methods. Using the full Kepler data set, we extracted the mode frequencies and rotational splittings for the two stars using a Bayesian approach. We then performed a detailed seismic modeling of both targets and used the rotational kernels to invert their internal rotation profiles using the MOLA inversion method. We thus obtained estimates of the average rotation rates in the g-mode cavity (⟨Ω⟩g) and in the p-mode cavity (⟨Ω⟩p). Results. We found that both stars are rotating nearly as solid bodies, with core-envelope contrasts of ⟨Ω⟩g/⟨Ω⟩p = 0.68 ± 0.47 for KIC 8524425 and ⟨Ω⟩g/⟨Ω⟩p = 0.72 ± 0.37 for KIC 5955122. This result shows that the internal transport of angular momentum has to occur faster than the timescale at which differential rotation is forced in these stars (between 300 Myr and 600 Myr). By modeling the additional transport of angular momentum as a diffusive process with a constant viscosity νadd, we found that values of νadd > 5 × 104 cm2 s−1 are required to account for the internal rotation of KIC 8524425, and νadd > 1.5 × 105 cm2 s−1 for KIC 5955122. These values are lower than or comparable to the efficiency of the core-envelope coupling during the main sequence, as given by the surface rotation of stars in open clusters. On the other hand, they are higher than the viscosity needed to reproduce the rotation of subgiants near the base of the RGB. Conclusions. Our results yield further evidence that the efficiency of the internal redistribution of angular momentum decreases during the subgiant phase. We thus bring new constraints that will need to be accounted for by mechanisms that are proposed as candidates for angular momentum transport in subgiants and red giants.

Highlights

  • Understanding how angular momentum (AM) is transported in stellar interiors is one of the main challenges faced by modern stellar astrophysics

  • We probed the internal rotation of two Kepler subgiants, KIC 8524425 and KIC 5955122, at an intermediate stage of evolution between the main sequence turnoff and the base of the red giant branch, where constraints on the core rotation were still lacking

  • Through a detailed seismic modeling, we confirmed that the two subgiants are closer to the main sequence turnoff than the stars studied by Deheuvels et al (2014)

Read more

Summary

Introduction

Understanding how angular momentum (AM) is transported in stellar interiors is one of the main challenges faced by modern stellar astrophysics. Current stellar evolution models generally include a prescription for hydrodynamically-induced AM transport through meridional circulation and shear instabilities (Zahn 1992; Mathis & Zahn 2004; Mathis et al 2018), but a growing body of evidence shows that they are far too inefficient at redistributing AM They fail to produce the nearly uniform rotation of the Sun, as revealed by helioseismology (Schou et al 1998; Gough 2015). They predict low coupling intensities between the core and the envelope of young stars, whereas short coupling timescales are needed to account for the surface rotation of stars in young clusters (Denissenkov et al 2010; Gallet & Bouvier 2013). These models drastically overestimate the core rotation rates of subgiants and red giants, as is detailed below

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call