Abstract

This and a companion paper compare the results from shaking-table testing, quasi-static testing, and analytical predictions to provide a coherent description of the seismic response of low-rise reinforced masonry buildings with flexible roof diaphragms. This paper presents the development, implementation, and results of coordinated analytical modeling intended to corroborate and extend the results of experimental work discussed in a companion paper, Part I: Seismic and Quasi-Static Testing, and more important, examine the efficacy and accuracy of different analytical modeling approaches. Specifically, linear elastic finite-element models, simplified two-degree-of-freedom models, and nonlinear lumped-parameter models are created and all agree well with measured responses. Based on these, a simple design tool for the analysis of low-rise reinforced masonry buildings with flexible diaphragms is developed and verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.