Abstract

Offshore structures, such as composite breakwaters, are generally vulnerable to strong seismic wave propagating through loose or medium-dense seabed foundation. However, the seismically induced failure process of offshore structures is not well understood. In this study, seismic dynamics of a composite breakwater on liquefiable seabed foundation is investigated using a fully coupled numerical model FSSI-CAS 2D. The computation results show that the numerical model is capable of capturing a variety of nonlinear interaction phenomena between the composite breakwater and its seabed foundation. The numerical investigation demonstrates a three-stage failure process of the breakwater under seismic loading. In this process, the far-field seabed can become fully liquefied first, inducing excessive settlement of the structure, followed by significant lateral movement and tilting of the structure when the near-field soil progressively liquefies. The study demonstrates great promise of using advanced numerical analysis in geotechnical earthquake design of offshore structures.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call