Abstract
Damping Reduction Factor plays a key role in scientific literature and Technical Codes, but till now existing formulations present differences and inconsistences probably because obtained by integration of real recorded events, thus sensible to specific used data. This paper investigates the relation between damping reduction factor and earthquake duration by means of random vibration theory. A stochastic process, that is non-stationary and filtered, is used to model a seismic event. The modulation function is suitably chosen to describe earthquakes characterized by different durations. The stochastic process peak theory allows to calculate damping reduction factor after the definition of the probabilistic response of a simple linear visco-elastic oscillator. The variability with seismic duration for different soil conditions and damping ratios is investigated. The study points out that damping reduction factor is more sensitive to seismic duration in the range of high period and on rigid soil with respect to other conditions. The results show that, if damping ratio or effective duration values are increased, the damping reduction factor value diminishes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.