Abstract

Steel plate shear wall (SPSW) is used as a lateral force-resisting system capable of dissipating the input seismic energy through metallic hysteresis. High axial force demand on the vertical boundary elements (VBEs) results in relatively heavier sections at the lower story levels of SPSWs. This lead to a non-uniform interstory drift distribution over the height, which may exceed the acceptable drift limits. Staggering of web plates can reduce the axial force demands in VBEs, ensuring better drift distribution and improved energy dissipation. This study aims at developing a design methodology for the staggered SPSW systems having the similar over-strength as the conventional counterpart to ensure an acceptable yield mechanism. A linear static analysis procedure is used to predict the axial and flexural demand in VBEs. The effectiveness of the proposed procedure is validated through the non-linear analysis for a six-story SPSW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.