Abstract
Apex shift hyperbolic Radon transform (ASHRT) is an extension of hyperbolic Radon transform (HRT). We have developed a novel sparsity-promoting framework for ASHRT by employing curvelet transform (CT) in the sparse inversion. RT-based seismic data processing can be considered as an optimization problem and a mixed norms inversion, therefore, objective function with CT can promote the sparsity of the transformed domain, which makes the sparse inversion more efficient. Compared with the conventional sparse inversion of ASHRT, the proposed method weights the sparse penalization, which indicates a sparser solution of ASHRT. We use synthetic and field data examples to demonstrate the performance of ASHRT. Compared to the conventional solution, the ours may lead to more accurately reconstructed results and have a better noise immunity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.