Abstract

ExSeisDat is designed using standard message passing interface (MPI) library for seismic data processing on high-performance super-computing clusters. These clusters are generally designed for efficient execution of complex tasks including large size IO. The IO performance degradation issues arise when multiple processes try accessing data from parallel networked storage. These complications are caused by restrictive protocols running by a parallel file system (PFS) controlling the disks and due to less advancement in storage hardware itself as well. This requires and leads to the tuning of specific configuration parameters to optimize the IO performance, commonly not considered by users focused on writing parallel application. Despite its consideration, the changes in configuration parameters are required from case to case. It adds up to further degradation in IO performance for a large SEG-Y format seismic data file scaling to petabytes. The SEG-Y IO and file sorting operations are the two of the main features of ExSeisDat. This research paper proposes technique to optimize these SEG-Y operations based on artificial neural networks (ANNs). The optimization involves auto-tuning of the related configuration parameters, using IO bandwidth prediction by the trained ANN models through machine learning (ML) process. Furthermore, we discuss the impact on prediction accuracy and statistical analysis of auto-tuning bandwidth results, by the variation in hidden layers nodes configuration of the ANNs. The results have shown the overall improvement in bandwidth performance up to 108.8% and 237.4% in the combined SEG-Y IO and file sorting operations test cases, respectively. Therefore, this paper has demonstrated the significant gain in SEG-Y seismic data bandwidth performance by auto-tuning the parameters settings on runtime by using an ML approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.