Abstract
I introduce a unified approach for denoising and interpolation of seismic data in the frequency-wavenumber ([Formula: see text]) domain. First, an angular search in the [Formula: see text] domain is carried out to identify a sparse number of dominant dips, not only using low frequencies but over the whole frequency range. Then, an angular mask function is designed based on the identified dominant dips. The mask function is utilized with the least-squares fitting principle for optimal denoising or interpolation of data. The least-squares fit is directly applied in the time-space domain. The proposed method can be used to interpolate regularly sampled data as well as randomly sampled data on a regular grid. Synthetic and real data examples are provided to examine the performance of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.