Abstract

This paper gives a review of seismic damage indices, with particular reference to their use in retrofit decision making. Damage indices aim to provide a means of quantifying numerically the damage in concrete structures sustained under earthquake loading. Indices may be defined locally, for an individual element, or globally, for a whole structure. Most local indices are cumulative in nature, reflecting the dependence of damage on both the amplitude and the number of cycles of loading. The main disadvantages of most local damage indices are the need for tuning of coefficients for a particular structural type and the lack of calibration against varying degrees of damage. Global damage indices may be calculated by taking a weighted average of the local indices throughout a structure, or by comparing the modal properties of the structure before and after (and sometimes during) the earthquake. The weighted-average indices are prone to much the same problems as the local indices. The modal indices vary widely in their level of sophistication, those capable of detecting relatively minor damage requiring the accurate determination of a large number of modes of vibration. The development and application of damage indices has until now concentrated almost exclusively on flexural modes of failure; there is a clear need to investigate the ability of the indices to represent shear damage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call