Abstract

Simple empirical expressions to estimate maximum seismic damage on the basis of five well known damage indices for planar regular moment resisting and x-braced steel frames are presented. They are based on the results of extensive parametric studies concerning the inelastic response of a large number of these frames to a large number of ground motions. Thousands of nonlinear dynamic analyses are performed by scaling the seismic records to different intensities in order to drive the structures to different levels of inelastic deformation and finally to collapse. The statistical analysis of the created response databank indicates that the number of stories, period of vibration, stiffness ratio, capacity factor (for moment resisting frames), brace slenderness ratio and column stiffness (for x-braced frames) and characteristics of the ground motion, such as characteristic period and spectral acceleration, strongly influence damage. Nonlinear regression analysis is employed in order to derive simple formulae, which reflect the influence of the aforementioned parameters and offer a direct estimation of the damage indices used in this study. More specifically, given the characteristics of the structure and the ground motion, one can calculate the maximum damage observed in column bases and beams (for moment resisting frames) or in braces (for x-braced frames). Finally, two examples serve to illustrate the use of the proposed expressions and demonstrate their accuracy and efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.