Abstract

A seismic damage detection method for isolated buildings is proposed based on substructure identification with incomplete contaminated measurements. A concept of a pseudo substructure with virtual conditions is constructed for the proof of the proposed substructure identification method. This identification method is implemented in a two-stage procedure. The interface forces of the target substructure are identified in the first stage and the parameter of the target substructure is updated in the second stage, which can enable the parameter identification of substructures with unknown input. Two computational methods are also proposed to improve the two-stage identification algorithm. A sub-time zone identification method is utilized to reduce the computation effort and the simultaneous identification of the unknown force and initial structural responses is presented in the first-stage identification for a general case in practical engineering. Numerical studies of a shear frame with nonlinear base isolation subject to earthquake ground motion are investigated to validate the proposed seismic damage detection method. A fourteen-storey concrete shear wall building with a two-storey steel frame on top connected by isolation is studied experimentally with shaking table tests to further validate the proposed method. The shear wall structure is taken as the target substructure for damage assessment. The interface force and parameter of the concrete shear wall building are estimated with the proposed method. Results from both the numerical simulations and laboratory tests indicate that the proposed method can estimate seismic isolated structures and detect damage effectively based on only a few accelerometers. It is also demonstrated that the parameter identification results based on the structure response measurement during the earthquake are more accurate than the identification with post-earthquake structural response measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.