Abstract

The paper focusses on seismic damage analysis of reinforced concrete (R/C) members, accounting for shear–flexure interaction in the inelastic range. A finite element of the beam-column type recently proposed by the writers for the seismic analysis of R/C structures is first briefly described. The analytical model consists of two distributed flexibility sub-elements which interact throughout the analysis to simulate inelastic flexural and shear response. The finite element accounts for shear strength degradation with inelastic curvature demand, as well as coupling between inelastic flexural and shear deformations after flexural yielding. Based on this model, a seismic damage index is proposed taking into account both inelastic flexural and shear deformations, as well as their interaction. The finite element and the seismic damage index are used to analyse the response of R/C columns tested under cyclic loading and failing either in shear or in flexure. It is shown that the analytical model and damage index can predict and describe well the hysteretic response of R/C columns with different types of failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.