Abstract

Seismic refraction data from the ESTRID‐1 profile are used for seismic velocity modeling along the strike of a large mafic intrusion in the Norwegian‐Danish Basin, central Denmark. The P wave velocity structure identifies a ∼8 km thick sedimentary succession with velocities between 1.8 and 5.7 km/s. The top basement is defined by a step to vp = 6.2 km/s. In the middle to lower crust a high‐velocity body (vp > 6.7 km/s), with its top located at about 10–12 km depth, is interpreted as a high‐velocity and high‐density gabbroic intrusion of Permian age. This high‐velocity body explains the large (∼50 mGal) positive gravity anomaly known as Silkeborg Gravity High. The intrusion has a minimum volume of 40,000 km3, which implies that the magma influx and the consequent cooling of the lithosphere from high temperature could have had profound effects on the subsidence of the Danish Basin, in particular because the magma probably intruded during only a few events and other similar structures cover much of the basin. An anomalously high velocity gradient (from 7.0 km/s in the middle crust to 7.7 km/s at 30–32 km depth) in the central part of the intrusion coincides with an interval without Moho reflections, indicative of a gradual transition zone between the crust and the mantle. This feature may show the location of the feeder dykes of the intrusion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.