Abstract

This research focuses on the Cathedral Church of Saint Mary in Murcia, Spain, which is located in a moderate-to-high seismic risk zone in the Spanish context. The study uses geophysical techniques and geotechnical investigation to characterise seismic ground models at the building's scale, aiming to understand the real amplification of the ground under seismic effect in historic buildings. Three soil layers (silt, sand with gravel, and gravel) were identified through core borings. Multichannel Analysis of Surface Waves (MASW) profiles and Mini-array profiles revealed Vs values of 305 ± 32 m/s, 296 ± 62 m/s, and 440 ± 38.5 m/s, respectively, for these materials. Seismic Refraction Tomography (SRT) showed Vp values of 586 ± 73 m/s, 700 m/s, and 1466 ± 489 m/s for the corresponding layers. The horizontal-to-vertical spectral ratio (HVSR) approach identified a ground predominant period ranging from 0.37 to 0.38 s. Another significant peak at 2.3 s is observed, probably associated to the Triassic basement. Three seismic events with magnitudes Mw between 4.9 and 5.1 were used as inputs to determine the amplification factor (AF). The results indicate a PGA amplification factor between 1.7 and 2.1. These results contribute to the conservation and mitigation of seismic risk of this cultural heritage generating input data that enables precise computation of the soil-structure interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.