Abstract

We study the uppermost mantle velocities and dip of Indian Moho beneath the NW Himalaya and Ladakh using 42 regional waveform data recorded on 15 seismographs along a ~600 km-long profile. We use the two-way travel time and interstation velocity methods. The apparent Pn and Sn velocities beneath the NW Himalaya are 8.08 ± 0.04 and 4.64 ± 0.07 km/s for earthquakes occurring south of the profile (downdip, western Indian shield) and 8.70 ± 0.13 and 4.76 ± 0.12 km/s for earthquakes from north (updip, western Tibet). Similarly, these velocities beneath Ladakh are 7.18 ± 0.07 and 4.32 ± 0.05 km/s for earthquakes due south (downdip, north Indian shield) and 8.50 ± 0.10 and 4.39 ± 0.12 km/s for earthquakes due north (updip, western Tibet). These velocity variations constrain the Moho dip at ~2.4 ± 0.14o beneath the NW Himalaya and ~6.6 ± 0.54o beneath Ladakh. Considering the varying dips along the profile, we observe that the true Pn (8.37 ± 0.07 km/s) and Sn (4.70 ± 0.1 km/s) velocities are higher for the NW Himalaya than for Ladakh (7.73 ± 0.08 and 4.33 ± 0.09 km/s). The large variation in interstation Pn velocity is observed between the station pairs near the Indus Zangpo Suture zone due to steep dipping (~7.1o to 6.26o) of the Indian Moho. In the Himalaya region, the interstation and average values of the velocities and Moho dip are comparable, whereas a variation is observed in different segments of the Ladakh region. The results show that the Indian Moho is underthrusting at a shallow angle (~2.5o) beneath the Himalaya, steepens abruptly (~6.6o) further north of the Southern Tibetan Detachment and continues at a shallow angle (~3.8o) beneath Ladakh.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.