Abstract

The Capacity Design approach emerged in the second half of the last century and is currently adopted by all the modern codes of practice for construction in seismic areas. It is based on the fundamental concept that the structure under consideration should not exhibit brittle failure modes, as brittle members or mechanisms are designed to be stronger than the maximum expected stresses they possibly get from the adjacent ductile members or mechanisms. This condition is generally imposed at the design stage without considering any degradation in material properties possibly due to the environmental agents. Although structural codes for RC structures usually provide practitioners with sound criteria intended at limiting the development of detrimental degradation phenomena, they have been never assessed against the possible loss in over-strength of brittle failure modes due to environment-induced degradation phenomena possibly occurring during the service life of the structure.This study aims to answer the question stated in the title and, in the authors’ knowledge, is one of the first attempts to embrace two traditionally distant research fields, such as Earthquake Engineering and Material Science. Thus, the paper investigates the time evolution of the possible failure modes in beams due to the premature degradation of steel stirrups and longitudinal reinforcement during the service life of RC structures. Both material properties and environmental conditions are taken into account to assess durability and structural safety in seismically designed RC beams and the possible consequences of material degradation on their expected failure modes under seismic actions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.