Abstract
According to most of current design standards, the need for high strength and ductility of reinforced concrete frame structures is accomplished utilizing a high amount of transverse reinforcement in beam–column joints. Reinforcement congestion can be overcome by means of Fiber Reinforced Concrete and High Performance Fiber Reinforced Concrete, which are known to improve the structural performance of single structural members or beam–column joints. Through an extended numerical simulation, this paper elaborates the overall benefits of using fiber reinforced concrete materials in critical regions to the seismic behaviour of regular reinforced concrete frame structures. An extensive number of non-linear static and dynamic analyses with distributed plasticity and fibre sections are performed to compare the behaviour of simple reinforced concrete and mixed reinforced concrete/fiber reinforced concrete frames in terms of total base shear and fragility curves and failure mechanisms. Even if execution and technological aspects are beyond the scope of the present work, the use of fiber reinforced concretes in critical regions of mixed frames seems to improve the structural performance of reinforced concrete frames at a global level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.