Abstract

SUMMARYThe steel tube‐reinforced concrete (ST‐RC) composite column is a novel type of composite column, which consists of a steel tube embedded in RC. In this paper, the seismic behavior of ST‐RC columns is examined through a series of experiments in which 10 one‐third scale column specimens were subjected to axial forces and lateral cyclic loading. The test variables include the axial force ratio applied to the columns and the amount of transverse reinforcement. All specimens failed in a flexural mode, showing stable hysteresis loops. Thanks to the steel tube and the high‐strength concrete it is filled with, the ST‐RC column specimens had approximately 30% lower axial force ratios and 22% higher maximum bending moments relative to the comparable RC columns when subjected to identical axial compressive loads. The amount of transverse reinforcement made only a small difference to the lateral load‐carrying capacity but significantly affected the deformation and energy dissipation capacity of the ST‐RC columns. The specimens that satisfied the requirements for transverse reinforcement adopted for medium ductile RC columns as specified by the Chinese Code for Seismic Design of Buildings (GB 50011‐2010) and EuroCode 8 achieved an ultimate drift ratio of around 0.03 and a displacement ductility ratio of approximately 5. The design formulas used to evaluate the strength capacity of the ST‐RC columns were developed on the basis of the superposition method. The predictions from the formulas showed good agreement with the test results, with errors no greater than 10%. Copyright © 2013 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call