Abstract

The behavior of square concrete-filled steel tube (CFT) beam–columns made from high-strength materials was investigated experimentally. The effects of the width-to-thickness ratio, yield stress of the steel tube and the axial load level on the stiffness, strength and ductility of high-strength CFT beam–columns were studied. Sixteen three-quarter scale CFT specimens, which included eight monotonic beam–column specimens and eight cyclic beam–column specimens, were tested. The experimental results indicate that cyclic loading does not have a significant influence on the stiffness or strength of CFT beam–columns. However, it causes a more rapid decrease of the post-peak moment resistance. The moment capacity of high-strength CFT beam–columns can be predicted with reasonable accuracy using the American Concrete Institute (ACI) code provisions for composite columns. Fiber-based models were developed for the CFT beam–column specimens. The uniaxial stress–strain curves for the fibers were derived from three-dimensional nonlinear finite element analyses of the CFTs. The results from the fiber analyses of the monotonic and cyclic beam–column specimens compare favorably with the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.