Abstract

Five specimens have been tested under cyclic lateral loads to explore the seismic behavior of T-shaped multi-partition steel–concrete shear walls along the asymmetrical axis. The loading has been applied by considering the torsion effect from non-coincidence between the lateral loads and the shear center in this study. The main parameters of the test are the axial compression ratio and section height-to-breadth ratio aiming to study the vertical load and web constraint effect. The test results indicate that the failure mode of all specimens along the asymmetric axis is bending failure with minor shear deformation measured during loading. The yield drift (1/138) and the ultimate drift (1/41) of the T-shaped multi-partition steel–concrete shear walls could meet the requirement of the corresponding code, namely 1/350 and 1/70, respectively. The increase in axial compression ratio increases the out-of-plane displacement but decreases the ductility of the specimens, whilst the increase in section height-to-breadth ratio decreases the out-of-plane displacement of the specimens. The relatively small torsion angle of less than 0.6° indicates that the T-shaped multi-partition steel–concrete shear walls have good torsion resistance. Under the cyclic lateral loads along the asymmetrical axis, the out-of-plane displacement of the T-shaped specimen will occur on the side without the web. The web elastic stress distribution model can predict the lateral resistance more accurately, whilst the full-section plastic stress distribution model overestimates the lateral resistance of T-shaped multi-partition steel–concrete shear walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.