Abstract

Enfeebling the effects of vibration caused by the movement of tectonic plates has been the major topic of research in the field of Structural Engineering. Base isolation is a technique used to counteract the effects of seismic vibration and ensuring the safety of the superstructure. Even though, the strategy of base isolation has been used in interminable number of structures, there is a need for economized, effective base isolation technique. India has been recycling and reusing waste tyres for four decades, it is estimated that 60% are disposed of through illegal dumping. India, being the second largest manufacturer of rubber after China, there is a menace of rubber disposal in the country. Despite the numerous efforts of technologists of recycling and utilizing the scrap rubber tyres, 17% of the scrap rubber tyres are diverted to landfill creating disposal problem. Therefore, there is a need for utilizing the used scrap rubber tyres in an innovative way instead of dumping it. Scrap Rubber tyres, being elastic in nature serve to be a potential shock absorber of seismic vibrations. In the present study, an attempt is made to utilize the recycled scrap rubber tyre in seismic isolation of structure. This technique proves to be a low- cost earthquake mitigation technique which can potentially reduce the damage caused by seismic shock propagation into the structure and hence ensure overall safety of the structure. An experimental analysis is done to evaluate the properties of assembly of rubber tyres and utilization of the same for isolating base of structures to check for the effectiveness in enfeebling the shocks produced by seismic vibrations. Furthermore, using the properties of scrap rubber tyres obtained from the experimental results, performance of the scrap tyres as a base isolation system for a multistoried building and stability of the structure was studied using Finite element analysis tool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.