Abstract

ABSTRACT Gas hydrates have received global attention as a possible alternative non-conventional energy resource. Hence, the detection, characterization and quantification of gas hydrates are very important for evaluating the resource potential. Presence of gas hydrates in sediments above the bottom simulating reflector or BSR is associated with low attenuation or high quality factor (Q), whereas, free gas bearing sediments below the BSR exhibit high attenuation or low seismic Q. Here the logarithm spectral ratio (LSR) method is applied to marine seismic reflection data along two cross lines (18 and 46) in the Krishna-Godavari (KG) basin in eastern Indian margin, where gas hydrates have already been established by drilling/coring. The interval Qs is calculated for three sedimentary layers (A, B, and C) bounded by the seafloor, BSR, one reflector above and another reflector below the BSR at some common depth points (CDPs) to study the attenuation characteristics of sediments across the BSR. The estimated average interval Q (160) for the hydrate bearing sediments (layer B) is much higher than the average interval Q (80) for both the loose clayey sediments (Layer A) and underlying free gas saturated sediments (layer C). This demonstrates that estimation of seismic quality factor Q can be used for characterization of gas hydrate reservoir.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.